Stable determination of coefficients in semilinear parabolic system with dynamic boundary conditions
نویسندگان
چکیده
In this work, we study the stable determination of four space-dependent coefficients appearing in a coupled semilinear parabolic system with variable diffusion matrices subject to dynamic boundary conditions which couple intern-boundary phenomena. We prove Lipschitz stability result for interior and potentials by means only one observation component, localized any arbitrary open subset physical domain. The proof mainly relies on some new Carleman estimates surface type.
منابع مشابه
Boundary Layers in a Semilinear Parabolic Problem
We study a singular perturbation problem for a certain type of reaction diiusion equation with a space-dependent reaction term. We compare the eeect that the presence of boundary layers versus internal layers has on the existence and stability of stationary solutions. In particular, we show that the associated eigenvalues are of diierent orders of magnitude for the two kinds of layers.
متن کاملNull Controllability for Parabolic Equations with Dynamic Boundary Conditions
We prove null controllability for linear and semilinear heat equations with dynamic boundary conditions of surface diffusion type. The results are based on a new Carleman estimate for this type of boundary conditions.
متن کاملExponential Attractors for Parabolic Equations with Dynamic Boundary Conditions
We study exponential attractors for semilinear parabolic equations with dynamic boundary conditions in bounded domains. First, we give the existence of the exponential attractor in L2(Ω) × L2(Γ) by proving that the corresponding semigroup satisfies the enhanced flattering property. Second, we apply asymptotic a priori estimate and obtain the exponential attractor in Lp(Ω) × L(Γ). Finally, we sh...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملAdaptive computation of solutions to semilinear parabolic equations with dynamical boundary conditions
Адаптивно пресмятане на решенията на полулинейни параболични уравнения с динамични гранични условия: В настоящата статия са предложени адаптивни методи за числено пресмятане на избухващите решения на полулинейни параболични задачи с динамични гранични условия. Алгоритмите са базирани на стандартни диференчни схеми, построени върху специални, неравномерни по пространството и времето мрежи. Числе...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2022
ISSN: ['0266-5611', '1361-6420']
DOI: https://doi.org/10.1088/1361-6420/ac91ed